Giuseppe PeanoGiuseppe Peano nacque il 27 agosto 1858, presso il villaggio di Spinetta di Cuneo. Fu il secondogenito di Bartolomeo Peano e Rosa Cavallo.

Dopo il trasferimento della famiglia a Cuneo, il fratello della madre (avvocato e sacerdote), resosi conto delle sue notevoli capacità, lo invitò a raggiungerlo a Torino dove continuò i suoi studi presso il Liceo classico Cavour. In seguito, divenne assistente di Angelo Genocchi all’Università di Torino e poi professore di calcolo infinitesimale presso lo stesso ateneo a partire dal 1890.

Numerosi i settori della matematica a cui portò rilevanti contributi. Se ne citano qui solo alcuni.

Nel 1887 scoprì un metodo di risoluzione di sistemi lineari di equazioni differenziali usando approssimazioni successive.

Nel 1889 pubblicò i suoi famosi assiomi (detti poi assiomi di Peano) che definivano i numeri naturali in termini di insiemi.

Nel 1891 fondò la Rivista di matematica, principalmente dedicata alla logica e ai fondamenti della matematica.

Intorno al 1892 cominciò a dedicarsi ad un progetto estremamente ambizioso, che sfocerà nel Formulario Mathematico, portato a termine nel 1908. In poche parole, Peano mirava a creare una notazione logico-matematica per mezzo della quale sarebbe stato possibile esprimere in modo compatto e omogeneo tutti i risultati matematici. Tale grandioso tentativo, all’avanguardia per i suoi tempi, fu compreso da pochi, ma lo fa oggi ritenere uno dei padri della logica matematica.

Il Formulario Mathematico fu redatto in “Latino sine flexione”, una lingua di sua invenzione (una sorta di latino semplificato, con imprestiti da inglese, francese e tedesco). Tale scelta di una lingua “internazionale” è ulteriormente rivelatricedella sua profonda esigenza intellettuale, volta alla semplificazione e alla generalizzazione.

Infine, Peano è da considerare uno degli inventori del calcolo vettoriale. Divenne socio nazionale dei Lincei nel 1929.

Morì il 20 aprile 1932 nella sua casa di campagna a Cavoretto, presso Torino, per un attacco di cuore che lo colse nella notte. La pronipote Lalla Romano lo ricorda nel romanzo biografico Una giovinezza inventata.

Fonti:

Note biografiche a cura di Roberto Rogai

Elenco opere (click sul titolo per il download gratuito)

  • La geometria basata sulle idee di punto e distanza
    Peano si pone il problema di quali concetti originari siano necessari e sufficienti per le definizioni in geometria. Per far questo parte dai concetti di punto e segmento. Il matematico dà sempre due definizioni dei concetti in esame: una in notazioni simboliche e l’altra descrittiva.
  • Importanza dei simboli in matematica
    Breve interessante articolo del 1915 nel quale Peano analizza il valore dei simboli, in particolare in matematica, ripercorrendone a grandi linee la storia.
  • Il latino quale lingua ausiliare internazionale
    In questo breve articolo del 1904 Peano ribadisce l'urgenza e la necessità che sia individuata una lingua condivisa e riconosciuta a livello internazionale per le comunicazioni scientifiche. Questa lingua può essere il latino e propone un "Latino sine flexione", facendone notare la corrispondenza con gli ideogrammi cinesi.
  • La numerazione binaria applicata alla stenografia
    Nel 1898 il grande matematico Peano presenta una nota alla Regia Accademia della Scienze di Torino per parlare di sistema binario e di come utilizzarlo nella codifica delle comunicazioni.
  • Una questione di grammatica razionale
    (4. Congresso Internazionale di Filosofia, Bologna, aprile 1911)
    In questo articolo del 1911 il matematico Giuseppe Peano si chiede se le classificazioni delle parole usate dalle grammatiche tradizionali (sostantivo, aggettivo, pronome, verbo...) dipendono solo da proprietà delle parole (proprietà formali) oppure se dipendono dagli enti a cui le parole si riferiscono (proprietà reali).
  • Sui libri di testo per l'aritmetica nelle scuole elementari
    In questo breve saggio, Peano espone quello che a suo avviso potrebbe essere il metodo migliore per insegnare la matematica alle alunne e agli alunni più giovani.
  • Sul libro V di Euclide
    Peano in questo breve testo evidenzia, nell'approccio all'insegnamento, le semplificazioni del linguaggio simbolico rispetto alle difficoltà di comprensione dell'antico linguaggio di Euclide.
  • Sulla definizione di probabilità
    Peano osserva in questo breve scritto che la definizione di probabilità in uso ai suoi tempi sia viziata da un evidente circolo vizioso (e riporta a sostegno l'opinione di due altri illustri matematici: Poincaré e Borel). Prosegue poi con la sua definizione di probabilità, che poi altro non è che il classicissimo rapporto casi favorevoli/casi possibili (supposti questi ultimi in numero finito).
 
autore:
Giuseppe Peano
ordinamento:
Peano, Giuseppe
elenco:
P